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Abstract 

This report contains an account of geostrophlc vortiics 

on a rotating sphere. A vortex of this type ti characterized 

by a singular spherical harmonic of degree v and order zero. 

This function has a role analogous to that of the Bessel 

function which characterizes a rectilinear geostrophic vortex 

in a rotating plane. 

Preceding page blank in 
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1. Introduction 

A thin spherical layer of an incompressible, inviscid fluid 

which is held on the surface of a rotating ball by gravitation 

can be taken for some purposes as an approximation to the Earth's 

atmosphere.  The analysis of the two dimensional vortical motion 

in such a layer should be useful for the understanding of certain 

observed meteorological phenomena. 

In a previous report a linearized analysis was presented 

under the assumption that the outer surface of the layer is a 

sphere always concentric to the ball representing the Earth. 

This report presents a linear analysis in which the outer surface 

of the fluid layer is allowed to be free but the Coriolis force 

is assumed to be independent of latitude.  This assumption de- 

fines a motion which can be regarded as a first approximation to 

the actual motion even if the fluid layer is not confined to a 

narrow band bounded by two circles of latitude. 

The investigation covers the case in which tangential 

accelerations are neglected in comparison with the Coriolis force. 

In other words, we study geostrophic vortices on a sphere as 

contrasted with geostrophic vortices on a plane.  The latter have 

been discussed by several authors in connection 'ith a tangential 

plane approximation to the motion of a thin layer of fluid 

covering a rotating ball.  References can be found in Morikawa, 

[1]. 
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2. Equations of Moclon 

Let p denote the distance of a point from the center of a 

ball E of large radius a which rotates with constant angular 

velocity CD about a polar axis.  Let <}, and 6 denote respectively 

the longitude and the colatltude of a point on the rotating 

spherical surface S of E.  Let p = a and p = t + h(M,t) repre- 

sent two surfaces which contain an Incompressible, Invlscld fluid 

which is gravltatlonally attracted by E.  Suppose h Is small 

compared with a. 

The general problem Is to find the motion of the fluid 

after its constant rotatory motion is disturbed by the sudden 

creation, at a reference time t = 0, of concentrated vortices 

normal to S. 

The velocity of a fluid particle relative to S is defined 

by the components 

component toward the east; u = (p sin 0) ^| = tangential 

do 
V =      " P "ar = tangential component toward the north; 

■fife =  radial component. w = 

If the only body force acting is that due to the gravitational 

potential G of E, then the basic hydrodynamical equations which 

define the motion of the fluid relative to S are the continuity 

equation 

P 1^ + 2„ + 
1  fdu  d(v sin 9)1 ^r^ [H 55 ^J ■ o 
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and the momentum equations 

dv + ™ + ui^ + 2(uu cos e = ^ ^1 ; 

In these equations the differential operator with respect to the 

time means 

d = ^ +   8   i • X J + w ^ 
97  Ot  p sin I "5^  p "SS"    "5p * 

The  symbol 5     denotes the  constant  density of the  fluid;   and p 

stands for the pressure in 

p p ? 
6   p üü    sin 6 

Pi = P + 60CJ --2 ^  

which can be referred to as the modified pressure. 

Since h is supposed to be small compared with the large 

radius a of E; and since 

w((f),e,a,t) = 0 

let us neglect the radial velocity and the radial variation of u 

and v.  Let us assume that G = gp where g is a constant; and that 

the centrifugal effects manifested by the partial derivatives of 
? ?    2 

5 p ü) sin 6 
0     can be ignored.  Let us also assume that the motion 

is such that the nonlinear terms in the tangential momentum 
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equations can be neglected; and that the radial momentum equa- 

tion can be replaced with the hydrostatic law 

P(<M,p,t) = g5o(h+ a- p) 

which satisfies  the  condition that  the  pressure  is  zero  at  the 

free  surface  p ■ a+h. 

Under the  above  assumptions  and with the notation 

u((j),e,t)   = u(<M,a,t)   , 

v((j),e,t)  = v(^0,a>t)   ; 

an approximation to the motion is determined by the equations 

(2.1) äw + du  d(v sin 
1$ 3^~ 

e) = 0 ; 

(2.2) & -  2*9 cos  e  = L- |h ; ot a sin 6  ^ ' 

(2.3) |+2.ucose=|^. 

An integration of (2.1) gives 

w((l),e,a+h,t) = g A p 
a sin 

^(v sin 0) -w tf 

The kinematic condition at the free surface is 

dh w((t),e,a+h,t) = £| 

and hence 

4 
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(2.4) dh h 
a sin ö 

ä(v sin 6) 
on 
du 

"SS "5? 

If h(4)6,0)  = h    = const.;   and  if we  introduce 

h- h0 
T](({),e, t) = —^— , 

o 

assuming that  T) is  small  almost everywhere,   then a linearization 

of  (2,4) yields 

(2.5) 
1         rö(v sine)       äu 

^t = a sin Ö   I 53 f| 

while the momentum equations become 

(2.6) 

(2.7) 

»V. 

4| - 2a)V cos 0 = 
gh 

a si 
o an  . 

äv 
"ST 

gh o är. a«« cos e = -g- ^ 

3. Geostrophic Vortices 

If we neglect the variation of the Coriolis force with 

latitude and take 

O) cos 0=0) cos 0-, = Ü), 

the last equations of Section 2 reduce to 

(5.1) ^t  a sin B 
^(v sin 0)  öu 

53      ^ 
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(3.2) 

(3.3) 

•ir- - 2ü),V = -   ot    J     as 
gh 

Tn~? ^J ; 

äv gh N 

Hereafter we confine ourselves to a study of these equations. 

As will be explained in the sequel, they lead to what are called 

geostrophic vortices. 

The elimination of r\  from 0,2)  and (3.3) leads to 

(3.4) 11  1 
"5^ a sin 9 

äu sin 6   , öv 
su- - 2(ülTlt 

The quantity 

r^ ,~ 

c ■ J    h(\x  sin 6) , Üv] 
a sin 0 SB- 

is  the radial component of vorticity; and by integration of (3.4) 

we have 

(3.5) a sin 0 
ä(u sin 0) , äv —s—+ ^ 2a31T1 HCMfO) 

This implies that we can use (3.5), (3.2) and (3.3) as a basic 

set of equations instead of (3.1); (3.2) and (3.3). 

Equations (3.?) and (3.3) give 

(3.6) 

and 

2^ 
d u 

at 1 a     j     1 d0      sin 0 Jtdf 

■--j-  ■■—■• ■ -   —- --'■■■■ --^—~. . ^.■..—.1.-—i^...^.^..        ...^ „^^ ... ^"-^ - —- — -.-.■■-- ■'""*■'-    "-     jMHMMhta 



^mm^m*^™ 

I 
(3.7) S-?-* 1  01} . O T) 

sin e S|  "5^0 e 

If these are used to eliminate u and v from [3.5),   we find 

(3.8) sin ̂
<>(sin0)|3 + -^ 

^ 
1  at2 

a22a)1C(<f),e,0) 

—g^::— 

For a vortex of strength ix concentrated at {^,6^)  when 

t = 0 we take 

A(*C(M#0)   a^i    5((t>-(f>1)5(0-ei) 
■gR: IK^* (it a sin 9. 

where 5  symbolizes  the  Dirac  delta function. 

The theory of Laplace  transforms can be used to show that 

the  steady state  solution of  (3.8)  corresponding to a con- 

centrated vortex is  such that 

(3.9) L_    tt(<M,t) = 
aoMKM) 

t-»-oo grv 

where f must  satisfy 

(3.10)      ^^(sme) 
.       x2.      4a2ü)?7/' 

^(♦-♦i^C -ei) 
=  sin K  

 — ■ ■■—■--   ... ■ _ —-—  
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The function ^ does not depend on t and the associated time 

independent velocity comonents are 

(3.11) 

(3.12) 

u = L.  S(<M,t) -4 

V = 

t->oo 

Lt-oov(^e't, 
1 

a sin 6 

Note that (5.10) is a consequence of the equations (3.11), (3.12) 

and the vorticity equation 

(3.13) a s fetli«0 sin 6)  + 1 t-*oo n H(*»*»o) 

4(ü^       M.6((|)- i1)B(e -0!) 

gH- + T: a sin 0 1 

In other words, (3.10) is implied by {3»b)i   (3.2) and (3.3) when 

we ignore inertial forces. 

The motion in a thin planar layer of fluid tangential to 

the surface of the Earth is often used as an approximation to the 

actual motion of the Earth's atmosphere.  For such an approxima- 

tion the analogues of (3.11); (3.12) and (3.13) n,re 

(3.14) 

(3.15) 

and 

(3.16) 

u = "5? 

? • 4 1 * 

1 
r 

ärU  dV 4ü^X  ^»(♦-♦1)6(r-r1) 
gET +      ~i 

8 
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In terms of the polar coordinates (r, (j)), these show that x Wit 

satisfy 

The only physically admissible solution of 0.17)   is 

^18)   X = -^Ko 

2a»-, r-p ö 1— 
-—- Ir  +  r1 -2rr1 cos (f «^J 
/gh o 

where K ( ) denotes the zeroth order modified Bersel function 

of the second kind. This defines what is called a geostrophic 

vortex. The motion of various configurations of such vortices 

has been studied by various authors, notably G. K. Morikawa [1], 

[2] whose paper3 contain detailed explanations and other 

references. In keeping with what seems to be accepted termin- 

ology we can say that (3*10) defines a geostrophic vortex on a 

sphere. 

Our object now is to investigate the nature of the solution 

of (5.10). This equation can be written as 

^•19)      snrirlr (sine) + _i    i-i + v(v+i^ 
sin^e dtf) 

tiOU -'t>1)5(e -e1) 
= sin e. 

where 

(5.20) v(v+l) = - 
4cD^a2 

The solution of (5*19) subject to 

   ■- — *-'- —- - ■—--"— 



a<0<ß;   0<(j)<?rr; 

and prescribed boundary conditions on the circles of latitude 

6 = a ;       6 = ß ; 

namely a Green's function for a zone, can be expressed in the 

form 

(3.21)      ^.iL 
a      oo 
grg [Vv(cos ö)^Bm^(cos  0)]cos ■(♦.♦1) 

where pj1 and Q^1 are solutions of 

d 
^z ti-.8)S + v(v+l) - m 

1-1* 
f = 0 

The appropriate series (3.21) can be summed for the case in which 

the zone becom-s a sphere.  However, since the details of the 

analysis based on the use of (3.21) are lengthy, let us proceed 

in a different way. 

The general solution of 

UTTT W  (sln e^ Hf + v(v+l)V ■ 0 

can be expressed in the fo rm 

* " cipv(-
cos 0) +cpp (cos e) 2 v 

when v is not an integer as is the case when v is defined by 

W,a V(V+1)--_K 
or 

10 
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where 

V - -i + u 

A  = 

In  the neighborhood of  the  north pole  P  (cos  0)   is  continuous 

and  P  (1)  = l|   but 

P (-cos  0)  =  ? , (-cos  6) v 1 ,  ., ' -«§♦ iA 

= — cosh ATT 
TT 

00 

cos  Axdx 

0 y2(cosh x - cos  0 ) 

behaves  like 

P  (-cos  0) ^ 2  sln V7r.ün 0     . 
V TT 

This suggests that if a vortex is concentrated at {$-,,6-,)}   if d-, 

is the geodesic distance from this point to an arbitrary point 

(((), 0) on S; and if y- is the angle -y, = d./a, then 

ii mjjm  F (-COS y. )   U 
4 sin VTT v      1 

U    P 
4 sin vrr v 

-cos 0 cos 0- 

-sin 0 sin 0-, cos (cj)-^) 

is the fundamental solution of (3.19). 

It can now be verified by direct substitution that 

(3.22) ll/   = 71 K  P (-COS -v, ) r      4 sin vrr vv    ^l' 

does indeed satisfy  (3.19).     Furthermore,   computations with the 

velocity components 

11 
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U = 4a sin VTT ^ p
v(-

cos y^  i 

V = 4a sin I sin VTT Jf p
v^

cos y^  I 

show that  in the neighborhood of (b^J^,   (3.22)  defines a 

vortical motion;  but  the vortex point itself reme/Ins at rest - it 

possesses no autonomous motion.     In fact,   it can be  shown that 

Voo 4 sin  VTT Pv(-cos Vi) 

K 
203-, 

Wr 
jr2+ r^ -filTj cos ((j) - (^ 

Hence we can say that (3.22) represents a geostrophic vortex on 

a rotating sphere in the same way as we say that 

U x  - 37 K 
2üi1 r-*—. ; 
——- /r + rj - 2rr1 cos ((() - (j)-,) 
/iKJ 

represents a geostrophic vortex on a rotating plane. 

For an arbitrary distribution of n vortices on the sphere 

the function ^, which can be regarded as a stream function, is 

1    n 

♦ =4 sin v7r^>iPv(-cos ^i) 

where 7i = di/a and di is the geodesic distance on S from the 

point of concentration of the i-th vortex, ((j).,©, ), to an 

arbitrary point (((), 0).  That is, 

cos 7^^ ■ cos 6  cos e^^+sin 6 sin 0. cos ((^-(L) . 

12 
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The  associated velocity  field  is given by 

U = ä-sl = 4a sin VTT ^ l^ ^(-COi y^)  ; 

V = 
a s 

i        a*       1 Ä T5-  • /      \ 
TTT ff m  4a sin Ö sin VTT ^ ^ ^("COt ^J 

Since 

U = a sin 0 V = -a 4T 
d© 
dt 

the equations of motion of the vortex at {^,6,)  are 
K  K 

and 

4a sin 6  sin VTT 

M, 
e=e. 

dek 

4a sin 6 sin vir 

ä  — 

1^ 
6=e, 

We are now in a position to develop a general theory for 

geostrophic vortices on a sphere analogous to the basic Helmholtz- 

Kirchoff theory for rectilinear vortices normal to a plane. 

Instead of doing this here it seems more useful to examine a few 

special cases which may be approximately applicable to certain 

physical situations. 

13 
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4. Geostrophlc Vortices In the Northern Hemisphere.  Either 

Velocity Component Zero at the Equator 

Let us turn now to the case of a concentrated geostrophlc 

vortex In the northern hemisphere subject to the condition that 

the normal velocity of the fluid at the equator Is zero.  For 

this case the stream function f  must s-.tlsfy 

^•^    iTFlT Jj (sin0)|| + _^_^ + v(v4l)^ 

=     sin IT  
for 

0 < ^0! <5 ;  0 < ^^ < 27r . 

The boundary condition is 

or 

2CÜ, 

g^ #(♦»$) = L^^i^Oit)  = const. 

We have supposed that T^^O) = 0; and we now suppose that 

lU^t) = 0 for all t. The boundary condition (4.2) then be- 

comes 

The solution of (4.1) which satisfies (4.3) can be formed 

from the fundamental solution 

14 
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71—T£  P (-COS -v-. ) 4 sin VTT v     'l' 

is we assume that the i lea of reflection across the equator will 

lead toward the solution.  In fact, it is easy to verify that 

^ Pv [-cos e cos ei - sin0 sin ei cos (^-«j).)]' 

(4.4)  * ..—Hi  I 
'       w      4 sin VTT \ > 

|-Pv [cos 6 cos ei - sine sin Öj^ cos (f-41)] 

If the desired solution.  With respect to the whole sphere, f  of 

(4.4) has concentrated vortices at ((j^e.,) and {^ ,^-6   ).     it 

should be noted that if we seek a stream function for a geo- 

strophic vortex on a rotating plane such that the normal velocity 

of the fluid is zero along a circle whose center is at the center 

of rotation, then a result analogous to (4.4) does not exist. 

The velocity components of the motion defined by (4.4) are 

U = ± 

4a sin VTT 

+F' 

-cos e cos e, 

-sin e sin e cos (<{)- (L ) 

cos e cos e, 

-sin e sin e, cos (i|>- (|) ) 

sin e cos e, 

-cos e sin 6 cos ((J)-(}) ) 

sin e cos e, 

+cos e sin e cos (ij)- (j)-, ) J 
and 

15 
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V = 
a s 

1  d* 
TirTT Jf 

\L 

-cos 6 cos 6. 

4a sin VTT I 

-P' 

k 

-sin 6  sin 0-, cos ((j) - <!>■,) 

cos 6  cos 6, 

-sin 0 sin 0. cos (^•^.) 

sin 0, sin {$> - $-,) 

sin 0-, sin ((j) - (!>-,) 

The equations for the motion of the vortex concentrated at 

((j) ,0 ) come from evaluating at ((L^,) the velocity field due 

to the vortex at (^-pTr^-, ).  They are 

*1 

0n  = 

d^ 

crr 

d01 

cTT 

cos 0, 
—^ 1— PVCOS 201) ; 
2a sin vrr v 

= 0 . 

From these we see that the vortex remains on its initial circle 

of latitude which it traverses with constant angular velocity. 

The function ^ corresponding to a concentrated vortex in 

the northern hemisphere with the boundary condition 

U(i^) = 0 

can also he found by appealing to a reflection process.  It is 

^ " 4 sin VTT 

P [-cos 0 cos 0,- sin 0 sin 0, cos (^-(K)] 

+P [cos 0 cos 0. - sin 0 sin 0, cos ((J)-«})])] 

16 
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It should be remarked, however, that a reflection technique for 

the determination of solutions of (3.19) for a general zone is 

unknown. 

If the northern component of the velocity of the fluid is 

zero at the equator; and if we have a polar vortex of strength \i0 

with three others of equal strength M, which at t = 0 are situated 

at 

27r ATT (^e^ ;  (♦♦^»1) ;  (^1H-^.,01) 

in the northern hemisphere, then the stream function is 

♦ = riin VTT 

U   [P  (-cos  9) -P (cos  6)] 
^o    V V 

_2_ /^ P  [-cos 6 cos 6   - sin© sin 6   cos {$-$>-. -5|£)1 

+Ii 
n2ri [-P [cos 6 cos e,    - sin 6 sin 0, cos (^.^•£=£] j 

A calculation shows  that the polar vortex remains  stationary 

while  the paths of .the other three are determined by 

(4.5) 

ek = o 

—5  / 
4a sin VTT   \ 

= O  . 

f    no[P^(-cos ei) +P^(cos  6^] 

3  cos »^(f sin201- 1) 

+ii -2 cos 9.F*(eoi 2en) 1 v l7 

+ cos 1^(1-1 iin2^) 

17 
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In other words, the position of the vortices subsequent to t = 0 

are given by 

(♦0#0) | 

2Tr ^^4. 0  N  ,    fJL.^TT ((t>1+ot,e1) ;  (^-L + ^+ot^e^^) ;  ((J^+^L+Ot,^) 

Equation (4.5) shows that for a certain strength |x the angular 

velocity f) becomes zero and all the vortices remain stationary. 

The stability of this equilibrium configuration can be investiga- 

ted by using the methods explained in the paper by Morikawa [1]; 

and the paper by Morikawa and Swenson [2]. 

18 
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